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Abstract:- This paper introduces a new 

divergence measure for a fuzzy matrix 

with proof of its validity. In addition, the 

properties are proved for the new fuzzy 

divergence measure. A method to solve 

decision making problem is developed by 

using the proposed fuzzy divergence 

measure. Finally, the application of this 

fuzzy divergence measure to decision 

making is shown using real-life example. 
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I. INTRODUCTION 

 A general problem in all fields like 

Mathematics, Science and Engineering is to 

distinguish two probability distributions 𝑃 =
(𝑝1, 𝑝2, … 𝑝𝑛) and 𝑄 = (𝑞, 𝑞2, … 𝑞𝑛). 
Measurement of this distance in Information 

theory is called divergence measure. 

Information theoretic measures (entropy, 

similarity measures and divergence 

measures) are consequential tools to manage 

the precarious information and successfully 

applied in different directions. Fuzziness or 

degree of diceyness is measured by the tool 

called Entropy. De Luca and Termini (1972) 

commenced the fuzzy entropy measures to 

define the uncertainty between fuzzy sets. 

Subsequently, entropy measures of fuzzy 

sets received great curiosity from 

researchers in different areas like analysis of 

contingency table by Gokhle and 

Kullback(1978), in approximation of 

probability distributions by Chao and Liu 

(1968), Kazakos and Cotsidas (1980), Lin 

and Wong (1988), in signal processing 

Kadota ansd Shepp (1967) and in pattern 

recognition by Ben (1978), Chen (1973) and 

in many other areas. To measure the distinct 

information between fuzzy sets, essentially 

Bhandari and Pal (1993) explored fuzzy 

divergence measure. In due course, various 

divergence measures developed and 

modified by kapur (1997), Parkash (2000), 

Rosenfeld (1985) for fuzzy sets. Bhandari 

and Pal(1993) introduced divergence 

measure for fuzzy sets, defined 𝐷(𝐴, 𝐴𝑛𝑒𝑎𝑟) 
ratio to 𝐷(𝐴, 𝐴𝑓𝑎𝑟) an ambiguity measure 

and  α-order fuzzy entropy using Renyi’s α-

order  probabilistic entropy. Afterwards, 

various scholars have consciousness on 

divergence measure for fuzzy sets. 

Corresponding to information measure of 

Bhandari and Pal (1993), Fan and Xie 

(1999) introduce exponential fuzzy 

divergence measure based on operations. 

They also studied its relation with 

divergence measure introduced by Bhandari 

and Pal (1993). Montes et al. (2002) studied 

the special classes of divergence measures 

and used the link between fuzzy and 

probabilistic uncertainty. Bajaj and Hooda 

(2010) generalized the measure of fuzzy 

directed divergence. Fuzzy directed 

divergence measure has wide range of 

applications in different areas. Sharma et al. 

(2020) proposed a non-probabilistic 

divergence measure for fuzzy matrices and 

applied the same in decision making 

problem and in feature selection problem. 

Rani et al. (2020) studied an information 
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measure and found application of fuzzy soft 

matrices.  Vlachos and Sergiadis (2007) 

introduced the divergence measure for IFSs, 

studied the relationship between divergence 

measure and entropy measures and found 

the application in image segmentation, 

pattern recognition and medical diagnosis. 

The remaining part of paper is organized as 

follows. Section 2 is devoted to introduce 

some conventional concepts, and notions 

related to fuzzy set theory and fuzzy matrix 

theory. In section 3, we proposed a new 

fuzzy divergence measure for fuzzy matrix 

corresponding to Bhandari and Pal (1993). 

Section 4 provides more dignified properties 

of the proposed measure in form of 

theorems. It is followed by the applications 

of the proposed divergence measure for the 

IFM to multi-criteria decision making 

(MCDM) and multi-attribute decision 

making (MADM) with a numerical example 

in section 5. Finally, some concluding 

remarks are drawn in section 6. 

 

II. PRELIMINARIES 

 This section is completely devoted to 

explain some basic concepts and the 

assumptions of fuzzy set theory and fuzzy 

matrix theory. Then, we recall axiomatic 

definition of fuzzy divergence measure. 
A. Fuzzy set:  
(Rani et al. (2020)) The linguistic values of 

the alternatives assessment are usually 

represented by fuzzy sets to deal with 

uncertainty of real –world problems. Fuzzy 

sets are the sets having degree of 

membership as an element of the set. Zadeh 

(1965) acquainted the fuzzy sets as the 

expansion of the crisp sets. 

Definition: (2020) A fuzzy set ḿ(ỳ) on Ủ is 

defined by a membership function ḿ(ỳ)  : Ủ 

→ [0,1] . For ỳ ∈ Ủ, ḿ (ỳ) the membership 

function denotes the degree to which ỳ 

belongs to fuzzy set ḿ. 

 

 

 

B. Fuzzy Matrix Theory:  
The basic idea behind the fuzzy matrix 

theory is very elementary and an easily 

applicable in all types of circumstances. The 

algorithms and algebra of fuzzy matrix 

theory are applicable for data related 

problems. Social scientists apply this 

approach to analyze interactions between 

attributes and to analyze other analytical 

tools. 

Definition: Fuzzy matrix (2020): A fuzzy 

matrix 𝐴 of order 𝑚× 𝑛 is defined as 𝐴 =

[< 𝑎𝑖𝑗 , >]𝑚×𝑛 where  𝑎𝑖𝑗 is the membership 

value of the element 𝑎𝑖𝑗 in 𝐴. We may write 

𝐴 as 𝐴 = [𝑎𝑖𝑗]𝑚×𝑛. For example, 

𝐴 = [
0.1 0.3 0.4
0.7 0.4 0.5
0.2 0.1 0.9

] 

is 3 × 3 fuzzy matrix. 

Definition: Let 𝐴 = [𝑎𝑖𝑗] ∈  [𝐹(M)]𝑚×𝑛, If 

𝑚 ≠ 𝑛, then 𝐴 is called a fuzzy rectangular 

matrix. 

Definition: Let 𝐴 = [𝑎𝑖𝑗] ∈  [𝐹(M)]𝑚×𝑛, If 

𝑚 = 𝑛, then 𝐴 is called a fuzzy square 

matrix. 

Definition: Let 𝐴 = [𝑎𝑖𝑗] ∈  [𝐹(M)]𝑚×𝑛, If 

𝑛 = 1, then 𝐴 is called a fuzzy column 

matrix. For example, 

𝐴 = [
0.2
07
0.5
] 

is 3 × 1 column fuzzy matrix.  

Definition: Let A= [𝑎𝑖𝑗] ∈  [𝐹(M)]𝑚×𝑛, If 

𝑚 = 1, then 𝐴 is called a fuzzy row matrix. 

For example, 

𝐴 = [0.1 0.5 0.8] 
is 1 × 3 row matrix.  

Operations on Two Fuzzy Matrices 

Here we performed some operation on fuzzy 

matrices. Two fuzzy matrices 𝐴 and 𝐵 of 

order 3 × 3 are taken for further operations 

as follows. 
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𝐴

= [
0.7 0.5 0.2
0.3 0.2 0.1
0.3 0.7 0.6

]                                          (2.2.1) 

𝐵

= [
0.2 0.3 0.1
0.5 0.2 0.6
0.8 0.7 0.2

]                                          (2.2.2) 

Union (Addition) Operation of Two Fuzzy 

Matrices 

Definition (2020): Let 𝐴 = [𝑎𝑖𝑗], 𝐵 =

[𝑏𝑖𝑗] ∈  [𝐹(M)]𝑚×𝑛.Then Union of fuzzy 

matrix 𝐴, 𝐵 is defined by (𝐴𝑚×𝑛 ∪
𝐵𝑚×𝑛) = 𝐶𝑚×𝑛 = [𝑐𝑖𝑗]𝑚×𝑛, where 𝑐𝑖𝑗 =

max (𝑎𝑖𝑗, 𝑏𝑖𝑗) for all 𝑖 and 𝑗. 
Example: The union operation of two 

matrices given by (2.2.1) and (2.2.2) is 

(𝐴3×3 ∪ 𝐵3×3) = 𝐶3×3 = [
0.7 0.5 0.2
0.5 0.2 0.6
0.8 0.7 0.6

] 

Intersection Operation of Two Fuzzy 

Matrices  

Definition (2020): Let 𝐴 = [𝑎𝑖𝑗], 𝐵 =

[𝑏𝑖𝑗] ∈  [𝐹(M)]𝑚×𝑛. Then intersection of 

𝐴, 𝐵 is defined by (𝐴𝑚×𝑛 ∩ 𝐵𝑚×𝑛) =
𝐶𝑚×𝑛 = [𝑐𝑖𝑗]𝑚×𝑛, where 𝑐𝑖𝑗 = 𝑚𝑖𝑛 (𝑎𝑖𝑗, 𝑏𝑖𝑗) 

for all 𝑖 and 𝑗. 
Example: The minimum operation of two 

matrices given by (2.2.1) and (2.2.2) is 

(𝐴3×3 ∩ 𝐵3×3) = 𝐶3×3 = [
0.2 0.3 0.1
0.3 0.2 0.1
0.3 0.7 0.2

] 

Some researchers used suprimum and 

infimum operation as an analogous to our 

usual maximum and minimum. 

Conjugate (Complement) of Fuzzy Matrix 

Definition (2020): Let 𝐴 = [𝑎𝑖𝑗], 𝐵 =

[𝑏𝑖𝑗] ∈  [F(M)]𝑚×𝑛, then 𝐴 is conjugate 

(complement) of 𝐵 denoted by 𝐵𝑐 = 𝐴 =

[𝑎𝑖𝑗], where 𝑎𝑖𝑗 = 1 − 𝑏𝑖𝑗 for all 𝑖 and 𝑗. 

Example: The conjugate (complement) 

operation of matrix given by (2.2.1) is 

𝐴𝑐 = 𝐵 = [
0.3 0.5 0.8
0.7 0.8 0.9
0.7 0.3 0.4

] 

Maximum-Minimum Operation of Two 

Fuzzy Matrices 

Definition (2020): Let 𝐴 = [𝑎𝑖𝑗] ∈

 [𝐹(M)]𝑚×𝑛 &  𝐵 = [𝑏𝑗𝑖] ∈  [F(M)]𝑛×𝑚 

Then Max-Min operation of 𝐴, 𝐵 is defined 

by 𝑚𝑎𝑥 −𝑚𝑖𝑛(𝐴𝑚×𝑛, 𝐵𝑛×𝑚) = 𝐶𝑚×𝑚 =
[𝑐𝑖𝑗]𝑚×𝑚, where 𝑐𝑖𝑗 =

max{min[(𝑎𝑖𝑗, 𝑏𝑗𝑖) 𝑓𝑜𝑟 𝑗 =

1 𝑡𝑜 𝑛]} 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑚.  
Example: The max-min operation of two 

matrices given by (2.2.1) and (2.2.2) is 

𝑚𝑎𝑥 −𝑚𝑖𝑛(𝐴3×3, 𝐵3×3) = 𝐶3×3

= [
0.5 0.3 0.5
0.2 0.3 0.2
0.6 0.6 0.6

] 

where 

𝑎11
= 𝑚𝑎𝑥{min(0.7, 0.2) ,min(0.5, 0.5) , min(0.2, 0.8)}
= 𝑚𝑎𝑥{0.2, 0.5, 0.2} = 0.5 

𝑎12
= 𝑚𝑎𝑥{min(0.7, 0.3) ,min(0.5, 0.2) , min(0.2, 0.7)}
= 𝑚𝑎𝑥{0.3, 0.2, 0.2} = 0.3. 
and so on 

Minimum-Maximum Operation of Two 

Fuzzy Matrices 

Definition: Let 𝐴 = [𝑎𝑖𝑗] ∈

 [𝐹(M)]𝑚×𝑛 &  𝐵 = [𝑏𝑗𝑖] ∈  [F(M)]𝑛×𝑚. 

Then Min-Max operation of 𝐴, 𝐵 is defined 

by 𝑚𝑖𝑛 −𝑚𝑎𝑥(𝐴𝑚×𝑛, 𝐵𝑚×𝑛) = 𝐶𝑚×𝑚 =
[𝑐𝑖𝑗]𝑚×𝑚, where 𝑐𝑖𝑗 =

min{max[(𝑎𝑖𝑗, 𝑏𝑗𝑖) 𝑓𝑜𝑟 𝑗 =

1 𝑡𝑜 𝑛]} 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑚.  

Example: The min-max operation of two 

matrices given by (2.2.1) and (2.2.2) is 

𝑀𝑖𝑛 −𝑀𝑎𝑥(𝐴3×3, 𝐵3×3) = 𝐶3×3

= [
0.5 0.5 0.2
0.3 0.2 0.2
0.3 0.3 0.3

] 

where, 𝑎11 =
𝑚𝑖𝑛{max(0.7, 0.2) ,max(0.5, 0.5) ,max(0.2, 0.8)} =
𝑚𝑎𝑥{0.7, 0.5, 0.8} = 0.5 
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𝑎12
= 𝑚𝑖𝑛{max(0.7, 0.3) ,max(0.5, 0.2) , max(0.2, 0.7)}
= 𝑚𝑖𝑛{0.7, 0.5, 0.7} = 0.5. 
and so on. 

 

III. FUZZY DIVERGENCE MEASURE 

Zadeh (1968) defined a measure of 

information for a fuzzy set known as fuzzy 

entropy, which is different from the classical 

Shannon (1948) entropy, as follows 

𝑍𝑃(𝐴) = −∑μA(𝑥𝑖)𝑝𝑖 log 𝑝𝑖

𝑛

𝑖=1

                 (3.1) 

Later on, De Luca and Termini (1972) 

provided the following measure of fuzzy 

entropy: 

        𝐻𝐷𝑇(𝐴) = −
1

𝑛
∑[𝜇𝐴(𝑥𝑖)𝑙𝑜𝑔𝜇𝐴(𝑥𝑖)

𝑛

𝑖=1

+ (1 − 𝜇𝐴(𝑥𝑖))𝑙𝑜𝑔(1

− 𝜇𝐴(𝑥𝑖))]      (3.2) 
They also pointed out that it is quite 

distinctive from Shannon’s information 

measures because no probabilistic concept is 

desirable to characterize it. After the 

revolutionary work of De Luca and Termini 

(1972), various non-probabilistic 

information measures have been insinuated 

by researchers and gave applications in 

various fields. For a random variable 𝑋 with 

probability distribution  𝑃 =
(𝑝1, 𝑝2, …… . . , 𝑝𝑛), Pal and Pal [1989] 

introduced the exponential entropy as: 

                  𝐻𝑒(𝑃)

=
1

𝑛(√𝑒 − 1)
∑𝑝𝑖(𝑒

1−𝑝𝑖

𝑛

𝑖=1

− 1)                                                   (3.3)     
Later on, Pal and Pal (1992) defined an 

exponential information measure for fuzzy 

entropy, analogous to equation (3.3) as: 

            𝐻𝑒(𝐴)

=
1

𝑛√𝑒 − 1
∑(𝜇𝐴(𝑥𝑖)𝑒

1−𝜇𝐴(𝑥𝑖)

𝑛

𝑖=1

+ (1 − 𝜇𝐴(𝑥𝑖))𝑒
𝜇𝐴(𝑥𝑖) − 1)    (3.4) 

Bhandari and Pal (1993) described the idea 

of fuzzy directed divergence considering the 

elementary properties of Kullback and 

Leibler (1951) directed divergence measure. 

Fuzzy divergence measure as developed by 

Bhandari and Pal, gives a fuzzy information 

measure for distinction of a two fuzzy set. 

Bhandari and Pal (1993) defined the fuzzy 

information for discrimination in favour of 

fuzzy set 𝐴 against 𝐵 by 

𝐼(𝐴: 𝐵)

=∑[𝜇𝐴(𝑥𝑖)𝑙𝑜𝑔
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)

𝑛

𝑖=1

+ (1 − 𝜇𝐴(𝑥𝑖))𝑙𝑜𝑔
1 − 𝜇𝐴(𝑥𝑖)

1 − 𝜇𝐵(𝑥𝑖)
]             (3.5) 

Bhandari and Pal (1993) provide the fuzzy 

entropy by using 𝐼(𝐴, 𝐴𝐹) as follows: 

𝐻𝐷𝑇(𝐴) = 1 −
1

𝑛 𝑙𝑛2
𝐼(𝐴, 𝐴𝐹)         (3.6) 

Bhandari and Pal (1993) defined a 

divergence measure between two fuzzy sets 

R & 𝑆 as follows: 

𝐷(𝑅, 𝑆) = 𝐼(𝑅, 𝑆) + 𝐼(𝑆, 𝑅) 

=∑[(𝜇𝑅(𝑥𝑖) − 𝜇𝑆(𝑥𝑖))𝑙𝑜𝑔
𝜇𝑅(𝑥𝑖)

𝜇𝑆(𝑥𝑖)

𝑛

𝑖=1

+ (𝜇𝑆(𝑥𝑖) − 𝜇𝑅(𝑥𝑖))𝑙𝑜𝑔
1 − 𝜇𝑅(𝑥𝑖)

1 − 𝜇𝑆(𝑥𝑖)
]   (3.7) 

Definition: Shang and Jiang (1997) pointed 

out that the measure in Equation (3.7) has a 

drawback, i.e., when 𝜇𝑆(𝑥𝑖) approaches 0 or 

1 for any value of 𝑥𝑖, its value tends toward 

infinity. Therefore, using the idea of Lin 

(1991) divergence measure as in equation 

(3.4), for 𝑅, 𝑆 ∈ 𝐹𝑆(𝑋), Shang and Jiang 

extended a fuzzy divergence measure (3.7), 

as: 
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𝐷𝑆𝐽(𝑅, 𝑆)∑

[
 
 
 
 
 
 
 
 
 

(

 
 
(𝜇𝑅(𝑥𝑖) − 𝜇𝑆(𝑥𝑖))𝑙𝑛

𝜇𝑅(𝑥𝑖)

(
𝜇𝑅(𝑥𝑖) + 𝜇𝑆(𝑥𝑖)

2 )

)

 
 

+

(

 
 
(𝜇𝑆(𝑥𝑖) − 𝜇𝑅(𝑥𝑖))𝑙𝑛

1 − 𝜇𝑅(𝑥𝑖)

(
2 − 𝜇𝑅(𝑥𝑖) − 𝜇𝑆(𝑥𝑖)

2 )

)

 
 

]
 
 
 
 
 
 
 
 
 

𝑛

𝑖=1

   (3.8) 

Some other measure of fuzzy directed 

divergence measures have been introduced 

and studied by Pal and Bezdek (1994), 

Kapur (1997), Fan and Xie (1999), Hooda 

(2004), Bajaj and Hooda (2010), Kumar et 

al. (2011), Bhatia and Singh (2013), Tomar 

and Ohlan (2014), Verma and Sharma 

(2014), Gupta and Santosh (2014), Ohlan 

(2015) and etc. These fuzzy divergence 

measures have application in various fields 

including decision making problems, fuzzy 

clustering, artificial intelligence etc. 

 
IV. LOGARITHMIC DIVERGENCE MEASURE FOR 

FUZZY MATRIX 

In this section, a divergence measure for 

fuzzy matrices 𝑅 & 𝑆 is proposed which is of 

logarithmic form. The validity of the 

proposed divergence measure is verified. 

Here we define a fuzzy divergence measure 

for fuzzy matrices: 

Definition (2020): Let 𝐹𝑀 be the set of all 

fuzzy matrices having 𝑚 rows and 𝑛 

columns and 𝑋 & 𝑌 ∈ 𝐹𝑀. Then a mapping 

𝐽 ∶  𝐹𝑀 × 𝐹𝑀  →  𝐴 is called non-

probabilistic divergence measure of fuzzy 

matrices if and only if 

a. 𝐽(𝑋: 𝑌) ≥ 0 
b. 𝐽(𝑋: 𝑌) = 0 when 𝑋 & 𝑌 are equal 

fuzzy matrix 

c. 𝐽(𝑋: 𝑌) = 𝐽(𝑌: 𝑋) i.e. divergence 

measure is symmetric in nature. 

d. 𝐽(𝑋: 𝑌) is convex in 𝑋 and 𝑌. 
Thus we say that a measure is information 

theoretic divergence measure for fuzzy 

matrices if it satisfies axioms (a) to (d). 

Here we proposed a divergence measure for 

fuzzy matrices 𝑋 and 𝑌 of order 𝑚 × 𝑛 

which is logarithmic in nature as follows:

  

𝐽(𝑋: 𝑌) =∑∑{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {((1 − 𝑥𝑖𝑗) − (1 − 𝑦𝑖𝑗)) 𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}

𝑛

𝑗=1

𝑚

𝑖=1

=∑∑[{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑛

𝑗=1

𝑚

𝑖=1

     (4.1) 

where 𝑥𝑖𝑗 ∈ 𝑋 & 𝑦𝑖𝑗 ∈ 𝑌 

To show that the proposed measure is a 

valid measure since it satisfies all the above 

four axioms which are proving by following 

theorem: 

Theorem 4.1: 𝐽(𝑋: 𝑌) ≥ 0  if 𝑋 𝑎𝑛𝑑 𝑌 ∈
[𝐹𝑀]𝑚×𝑛. 

Proof: It is trivial that the measure is non-

negative for each 𝑎 & 𝑏  (where  𝑎 = 𝑥𝑖𝑗 ∈

𝑋 & 𝑏 =  𝑦𝑖𝑗 ∈ 𝑌 ). 

Theorem 4.2: 𝐽(𝑋: 𝑌) = 0 if  𝑋 = 𝑌 or 

𝑥𝑖𝑗 = 𝑦𝑖𝑗 . 
Proof: We have 
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𝐽(𝑋: 𝑌) =∑∑[{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑛

𝑗=1

𝑚

𝑖=1

 

And if 𝑋 = 𝑌 or 𝑥𝑖𝑗 = 𝑦𝑖𝑗 then  

𝐽(𝑋: 𝑌) =∑∑[(𝑥𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑥𝑖𝑗
+ (𝑥𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑥𝑖𝑗
]

𝑛

𝑗=1

𝑚

𝑖=1

 

𝐽(𝑋: 𝑌) =∑∑[0 + 0]

𝑛

𝑗=1

𝑚

𝑖=1

=∑∑[0]

𝑛

𝑗=1

𝑚

𝑖=1

 

𝐽(𝑋: 𝑌) = 0 
Hence proved. 

Theorem 4.3: 𝐽(𝑋: 𝑌) = 𝐽(𝑌: 𝑋). 
Proof: To prove we show 𝐽(𝑋: 𝑌) − 𝐽(𝑌: 𝑋) = 0 

𝐽(𝑋: 𝑌) =∑∑[{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑛

𝑗=1

𝑚

𝑖=1

 

 𝐽(𝑌: 𝑋) =∑∑[{(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔
𝑦𝑖𝑗

𝑥𝑖𝑗
} + {(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔

1 − 𝑦𝑖𝑗

1 − 𝑥𝑖𝑗
}]

𝑛

𝑗=1

𝑚

𝑖=1

 

𝐽(𝑋: 𝑌) − 𝐽(𝑌: 𝑋) =∑∑

[
 
 
 
 (𝑥𝑖𝑗 − 𝑦𝑖𝑗) (𝑙𝑜𝑔

𝑥𝑖𝑗

𝑦𝑖𝑗
+ 𝑙𝑜𝑔

1 − 𝑦𝑖𝑗

1 − 𝑥𝑖𝑗
)

+(𝑦𝑖𝑗 − 𝑥𝑖𝑗) (𝑙𝑜𝑔
𝑦𝑖𝑗

𝑥𝑖𝑗
+ 𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
)
]
 
 
 
 𝑛

𝑗=1

𝑚

𝑖=1

 

=∑∑

[
 
 
 
 (𝑥𝑖𝑗 − 𝑦𝑖𝑗) (𝑙𝑜𝑔

𝑥𝑖𝑗

𝑦𝑖𝑗
+ 𝑙𝑜𝑔

1 − 𝑦𝑖𝑗

1 − 𝑥𝑖𝑗
)

−(𝑥𝑖𝑗 − 𝑦𝑖𝑗) (𝑙𝑜𝑔
𝑦𝑖𝑗

𝑥𝑖𝑗
+ 𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
)
]
 
 
 
 𝑛

𝑗=1

𝑚

𝑖=1

 

=∑∑[(𝑥𝑖𝑗 − 𝑦𝑖𝑗) ((𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
+ 𝑙𝑜𝑔

1 − 𝑦𝑖𝑗

1 − 𝑥𝑖𝑗
) − (𝑙𝑜𝑔

𝑦𝑖𝑗

𝑥𝑖𝑗
+ 𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
))]

𝑛

𝑗=1

𝑚

𝑖=1

 

=∑∑[(𝑥𝑖𝑗 − 𝑦𝑖𝑗) ((𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗

1 − 𝑦𝑖𝑗

1 − 𝑥𝑖𝑗
) − (𝑙𝑜𝑔

𝑦𝑖𝑗

𝑥𝑖𝑗

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
))]

𝑛

𝑗=1

𝑚

𝑖=1

 

=∑∑[(𝑥𝑖𝑗 − 𝑦𝑖𝑗) (𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗

1 − 𝑦𝑖𝑗

1 − 𝑥𝑖𝑗

𝑦𝑖𝑗

𝑥𝑖𝑗

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
)]

𝑛

𝑗=1

𝑚

𝑖=1

 

=∑∑[(𝑥𝑖𝑗 − 𝑦𝑖𝑗)log (1)]

𝑛

𝑗=1

𝑚

𝑖=1

 

𝐽(𝑋: 𝑌) − 𝐽(𝑌: 𝑋) =∑∑[(𝑥𝑖𝑗 − 𝑦𝑖𝑗) (0)]

𝑛

𝑗=1

𝑚

𝑖=1

=∑∑[0]

𝑛

𝑗=1

𝑚

𝑖=1

 

𝐽(𝑋: 𝑌) − 𝐽(𝑌: 𝑋) = 0 

Theorem 4.4: 𝐽(𝑋: 𝑌) is convex in 𝑋 and 𝑌. 
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Proof: First we prove 𝐽(𝑋: 𝑌) convex in 𝑋.  

𝐽(𝑋: 𝑌) =∑∑[{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑛

𝑗=1

𝑚

𝑖=1

 

𝜕𝐽(𝑋: 𝑌)

𝜕𝑥𝑖𝑗
=∑∑[(𝑥𝑖𝑗 − 𝑦𝑖𝑗) (

1

𝑥𝑖𝑗
) + 𝑙𝑜𝑔

𝑥𝑖𝑗

𝑦𝑖𝑗
+ (𝑦𝑖𝑗 − 𝑥𝑖𝑗) (

−1

1 − 𝑥𝑖𝑗
) + 𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
(−1)]

𝑛

𝑗=1

𝑚

𝑖=1

 

When  𝑋 = 𝑌 𝑜𝑟 𝑥𝑖𝑗 = 𝑦𝑖𝑗, then 

𝜕𝐽(𝑋: 𝑌)

𝜕𝑥𝑖𝑗
  = ∑∑[(𝑥𝑖𝑗 − 𝑥𝑖𝑗) (

1

𝑥𝑖𝑗
) + 𝑙𝑜𝑔

𝑥𝑖𝑗

𝑥𝑖𝑗
+ (𝑥𝑖𝑗 − 𝑥𝑖𝑗) (

−1

1 − 𝑥𝑖𝑗
) + 𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑥𝑖𝑗
(−1)]

𝑛

𝑗=1

𝑚

𝑖=1

 

𝜕𝐽(𝑋: 𝑌)

𝜕𝑥𝑖𝑗
  = ∑∑[0 + log(1) + 0 − log(1)]

𝑛

𝑗=1

𝑚

𝑖=1

= 0 

𝜕2𝐽(𝑋: 𝑌)

𝜕𝑥𝑖𝑗2
=∑∑[(𝑥𝑖𝑗 − 𝑦𝑖𝑗) (

−1

𝑥𝑖𝑗
2 ) + (

1

𝑥𝑖𝑗
) + (

1

𝑥𝑖𝑗
) + (𝑦𝑖𝑗 − 𝑥𝑖𝑗) (

−1

(1 − 𝑥𝑖𝑗)2
)

𝑛

𝑗=1

𝑚

𝑖=1

+ (
1

1 − 𝑥𝑖𝑗
) + (

1

1 − 𝑥𝑖𝑗
)] 

𝜕2𝐽(𝑋: 𝑌)

𝜕𝑥𝑖𝑗2
=∑∑[(𝑥𝑖𝑗 − 𝑦𝑖𝑗) (

−1

𝑥𝑖𝑗
2 ) + (

2

𝑥𝑖𝑗
) + (𝑦𝑖𝑗 − 𝑥𝑖𝑗) (

−1

(1 − 𝑥𝑖𝑗)2
) + (

2

1 − 𝑥𝑖𝑗
)]

𝑛

𝑗=1

𝑚

𝑖=1

 

When 𝑋 = 𝑌 𝑜𝑟 𝑥𝑖𝑗 = 𝑦𝑖𝑗, then 

𝜕2𝐽(𝑋: 𝑌)

𝜕𝑥𝑖𝑗2
=∑∑[(𝑥𝑖𝑗 − 𝑥𝑖𝑗) (

−1

𝑥𝑖𝑗
2 ) + (

2

𝑥𝑖𝑗
) + (𝑥𝑖𝑗 − 𝑥𝑖𝑗) (

−1

(1 − 𝑥𝑖𝑗)2
) + (

2

1 − 𝑥𝑖𝑗
)]

𝑛

𝑗=1

𝑚

𝑖=1

 

𝜕2𝐽(𝑋: 𝑌)

𝜕𝑥𝑖𝑗2
=∑∑[0 + (

2

𝑥𝑖𝑗
) + 0 + (

2

1 − 𝑥𝑖𝑗
)]

𝑛

𝑗=1

𝑚

𝑖=1

=∑∑[(
2

𝑥𝑖𝑗
) + (

2

1 − 𝑥𝑖𝑗
)]

𝑛

𝑗=1

𝑚

𝑖=1

 

𝜕2𝐽(𝑋: 𝑌)

𝜕𝑥𝑖𝑗2
=∑∑[

2(1 − 𝑥𝑖𝑗 + 𝑥𝑖𝑗)

𝑥𝑖𝑗(1 − 𝑥𝑖𝑗)
]

𝑛

𝑗=1

𝑚

𝑖=1

=∑∑[
2(1)

𝑥𝑖𝑗(1 − 𝑥𝑖𝑗)
]

𝑛

𝑗=1

𝑚

𝑖=1

> 0 

𝜕2𝐽(𝑋: 𝑌)

𝜕𝑥𝑖𝑗2
=∑∑[

2(1)

𝑥𝑖𝑗(1 − 𝑥𝑖𝑗)
]

𝑛

𝑗=1

𝑚

𝑖=1

> 0 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖𝑗 > 0 

The proof of the theorem shows  𝐽(𝑋: 𝑌) is a 

convex function of 𝑋. 

Similarly, we can show that 𝐽(𝑋: 𝑌) is a 

convex function of 𝑌. 
The proposed divergence measure is a valid 

divergence measure of fuzzy matrices, 

satisfies all the four axioms.  

 

V. PROPERTIES OF FUZZY DIVERGENCE 

MEASURE 
In this section, some properties of proposed 

measure are proved in the form of theorems. 
Theorem 5.1: Let 𝑋 𝑎𝑛𝑑 𝑌 ∈ [𝐹𝑀]𝑚×𝑛, 

then the following properties are satisfied by 

𝐽(𝑋: 𝑌). 

a. 𝐽(𝑋: 𝑌) = 𝐽(𝑋𝑐: 𝑌𝑐) 
b. 𝐽[(𝑋⋃𝑌): (𝑋⋂𝑌)] = 𝐽(𝑋: 𝑌) 
c. 𝐽(𝑋: (𝑋⋃𝑌)) = 𝐽(𝑌: (𝑋⋂𝑌)) 
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d. 𝐽(𝑋: (𝑋⋂𝑌)) = 𝐽(𝑌: (𝑋⋃𝑌) 
Proof: To prove these theorems, we define 

both fuzzy matrices into two sets as given 

below: 

𝑆1 = {𝑥𝑖𝑗 𝑜𝑟 𝑦𝑖𝑗  ;  𝑥𝑖𝑗 ∈ 𝑋 𝑜𝑟 𝑦𝑖𝑗 ∈ 𝑌; 𝑥𝑖𝑗  ≥  𝑦𝑖𝑗}

𝑆2 = {𝑥𝑖𝑗  𝑜𝑟 𝑦𝑖𝑗 ;  𝑥𝑖𝑗 ∈ 𝑋 𝑜𝑟 𝑦𝑖𝑗 ∈ 𝑌; 𝑥𝑖𝑗  <  𝑦𝑖𝑗}
}  

(a) We have  

𝐽(𝑋: 𝑌) =∑∑[{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑛

𝑗=1

𝑚

𝑖=1

 

𝐽(𝑋𝑐: 𝑌𝑐)

=∑∑[
((1 − 𝑥𝑖𝑗) − (1 − 𝑦𝑖𝑗)) 𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
+ {((1 − 𝑦𝑖𝑗) − (1 − 𝑥𝑖𝑗)) 𝑙𝑜𝑔

1 − (1 − 𝑥𝑖𝑗)

1 − (1 − 𝑦𝑖𝑗)
}
]

𝑛

𝑗=1

𝑚

𝑖=1

 

𝐽(𝑋𝑐: 𝑌𝑐)∑∑[(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔
1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
+ (𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔

𝑥𝑖𝑗

𝑦𝑖𝑗
]

𝑛

𝑗=1

𝑚

𝑖=1

 

𝐽(𝑋𝑐: 𝑌𝑐) = 𝐽(𝑋: 𝑌) 
 (b)       We have 

 𝐽[(𝑋⋃𝑌): (𝑋⋂𝑌)] 

=∑∑

[
 
 
 
 (max(𝑥𝑖𝑗 , 𝑦𝑖𝑗) − min (𝑥𝑖𝑗, 𝑦𝑖𝑗)𝑙𝑜𝑔

max (𝑥𝑖𝑗, 𝑦𝑖𝑗) 

min (𝑥𝑖𝑗, 𝑦𝑖𝑗)
)

+(min(𝑥𝑖𝑗 , 𝑦𝑖𝑗) − max (𝑥𝑖𝑗 , 𝑦𝑖𝑗))𝑙𝑜𝑔
1 − max (𝑥𝑖𝑗 , 𝑦𝑖𝑗) 

1 − min (𝑥𝑖𝑗, 𝑦𝑖𝑗) ]
 
 
 
 𝑛

𝑗=1

𝑚

𝑖=1

 

= ∑ [{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1

 

  + ∑ [{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

 

= { ∑ [{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
}]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1

  + ∑ [{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
}]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

} 

+ { ∑ [(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔
1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1

+ ∑ [(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔
1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

} 

=∑∑[(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
]

𝑛

𝑗=1

𝑚

𝑖=1

 +∑∑[(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔
1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
]

𝑛

𝑗=1

𝑚

𝑖=1

 

=∑∑[{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑛

𝑗=1

𝑚

𝑖=1

= 𝐽(𝑋: 𝑌) 

Hence proved. 

(c) 𝐽(𝑋: (𝑋⋃𝑌)) = 𝐽(𝑌: (𝑋⋂𝑌)) 

Taking left hand side, we have
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𝐽(𝑋: (𝑋⋃𝑌)) =∑∑

[
 
 
 
 (𝑥𝑖𝑗 −max (𝑥𝑖𝑗, 𝑦𝑖𝑗))𝑙𝑜𝑔

𝑥𝑖𝑗

max (𝑥𝑖𝑗, 𝑦𝑖𝑗)

+(max (𝑥𝑖𝑗, 𝑦𝑖𝑗)) − 𝑥𝑖𝑗)𝑙𝑜𝑔
1 − 𝑥𝑖𝑗

1 − max (𝑥𝑖𝑗 , 𝑦𝑖𝑗)]
 
 
 
 𝑛

𝑗=1

𝑚

𝑖=1

 

= ∑ [(𝑥𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑥𝑖𝑗
+ (𝑥𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑥𝑖𝑗
]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1

 

  + ∑ [{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

 

= ∑ [{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

 

 Taking R.H.S, 

𝐽(𝑌: (𝑋⋂𝑌)) =∑∑[{(min (𝑥𝑖𝑗, 𝑦𝑖𝑗) − 𝑦𝑖𝑗)𝑙𝑜𝑔
min (𝑥𝑖𝑗, 𝑦𝑖𝑗)

𝑦𝑖𝑗
}

𝑛

𝑗=1

𝑚

𝑖=1

+ {(𝑦𝑖𝑗 −min (𝑥𝑖𝑗 , 𝑦𝑖𝑗))𝑙𝑜𝑔
1 − min (𝑥𝑖𝑗, 𝑦𝑖𝑗)

1 − 𝑦𝑖𝑗
}] 

= ∑ [(𝑦𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑦𝑖𝑗

𝑦𝑖𝑗
+ (𝑦𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔

1 − 𝑦𝑖𝑗

1 − 𝑦𝑖𝑗
]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1

 

  +∑ [{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1−𝑥𝑖𝑗

1−𝑦𝑖𝑗
}]𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

’= ∑ [{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} +𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

{(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔
1−𝑥𝑖𝑗

1−𝑦𝑖𝑗
}] 

 L.H.S = R.H.S. 

 (d) 𝐽(𝑋: (𝑋⋂𝑌)) = 𝐽(𝑌: (𝑋⋃𝑌)) 
Evaluating L.H.S. , 

𝐽(𝑋: (𝑋⋂𝑌)) =∑∑

[
 
 
 
 (𝑥𝑖𝑗 −min (𝑥𝑖𝑗, 𝑦𝑖𝑗))𝑙𝑜𝑔

𝑥𝑖𝑗

min (𝑥𝑖𝑗, 𝑦𝑖𝑗)

+(min (𝑥𝑖𝑗, 𝑦𝑖𝑗) − 𝑥𝑖𝑗)𝑙𝑜𝑔
1 − 𝑥𝑖𝑗

1 − min (𝑥𝑖𝑗, 𝑦𝑖𝑗)]
 
 
 
 𝑛

𝑗=1

𝑚

𝑖=1

 

= ∑ [{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1

 

+ ∑ [(𝑥𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑥𝑖𝑗
+ (𝑥𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑥𝑖𝑗
]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

 

  = ∑ [{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1

 

 Taking R.H.S. , 
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𝐽(𝑌: (𝑋⋃𝑌)) =∑∑

[
 
 
 
 (max(𝑥𝑖𝑗 , 𝑦𝑖𝑗) − 𝑦𝑖𝑗)𝑙𝑜𝑔

max(𝑥𝑖𝑗 , 𝑦𝑖𝑗)

𝑦𝑖𝑗

+ (𝑦𝑖𝑗 −max (𝑥𝑖𝑗, 𝑦𝑖𝑗))𝑙𝑜𝑔
1 − max (𝑥𝑖𝑗, 𝑦𝑖𝑗)

1 − 𝑦𝑖𝑗 ]
 
 
 
 𝑛

𝑗=1

𝑚

𝑖=1

 

= ∑ [{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1

 

+ ∑ [(𝑥𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑥𝑖𝑗
+ (𝑥𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑥𝑖𝑗
]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

 

  = ∑ [{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1

 

Thus L.H.S = R.H.S. 

Corollary 5.1: If 𝑋 𝑎𝑛𝑑 𝑌 ∈ [𝐹𝑀]𝑚×𝑛 then 

we have 

 𝐽(𝑋: (𝑋⋃𝑌)) + 𝐽(𝑋: (𝑋⋂𝑌)) = 𝐽(𝑋: 𝑌) 

Proof: From the part c and d of theorem 

(5.1), we have 

As we know.

 

𝐽(𝑋: (𝑋⋃𝑌)) = ∑ [{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

 

And also, 

𝐽(𝑋: (𝑋⋂𝑌)) = ∑ [{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1

 

And now, 

𝐽(𝑋: (𝑋⋃𝑌)) + 𝐽(𝑋: (𝑋⋂𝑌)) =

[
 
 
 
 
 ∑ [{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔

𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

+ ∑ [{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1 ]
 
 
 
 
 

 

𝐽(𝑋: (𝑋⋃𝑌)) + 𝐽(𝑋: (𝑋⋂𝑌)) =∑∑[{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑛

𝑗=1

𝑚

𝑖=1

= 𝐽(𝑋: 𝑌) 
Hence Proved. 

Corollary 5.2: If 𝑋 𝑎𝑛𝑑 𝑌 ∈ [𝐹𝑀]𝑚×𝑛 then 

we have 

 𝐽(𝑌: (𝑋⋃𝑌)) + 𝐽(𝑌: (𝑋⋂𝑌)) = 𝐽(𝑋: 𝑌) 

Proof:  Again from the part c and d of 

theorem (5.1) we can prove it easily. 

As we know that,

 

𝐽(𝑌: (𝑋⋂𝑌)) = ∑ [{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

 

And also, 
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𝐽(𝑌: (𝑋⋃𝑌)) = ∑ [{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1

 

And now, 

𝐽(𝑌: (𝑋⋃𝑌)) + 𝐽(𝑌: (𝑋⋂𝑌)) =

[
 
 
 
 
 ∑ [{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔

𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

+ ∑ [{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1 ]
 
 
 
 
 

 

𝐽(𝑌: (𝑋⋃𝑌)) + 𝐽(𝑌: (𝑋⋂𝑌)) =∑∑[{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑛

𝑗=1

𝑚

𝑖=1

= 𝐽(𝑋: 𝑌) 
Hence Proved. 

Corollary 5.3: If 𝑋 𝑎𝑛𝑑 𝑌 ∈ [𝐹𝑀]𝑚×𝑛 then 

we have 

𝐽((𝑋⋂𝑌): 𝑋) = 𝐽((𝑋⋃𝑌): 𝑌) ≤ 𝐽(𝑋: 𝑌) 
Proof: From symmetric property of 

divergence measure  

𝐽(𝑋: (𝑋⋂𝑌)) = 𝐽((𝑋⋂𝑌): 𝑋) & 𝐽((𝑋⋃𝑌): 𝑌)
= 𝐽(𝑌: (𝑋⋃𝑌)) 

Now from part (d) of theorem 5.1 we have, 

𝐽(𝑋: (𝑋⋂𝑌)) = 𝐽(𝑌: (𝑋⋃𝑌) 
Hence, 

𝐽((𝑋⋂𝑌): 𝑋) = 𝐽((𝑋⋃𝑌): 𝑌) 
Now by using corollary (5.1) we have, 

𝐽(𝑋: (𝑋⋃𝑌)) + 𝐽(𝑋: (𝑋⋂𝑌)) = 𝐽(𝑋: 𝑌) 

𝐽((𝑋⋂𝑌): 𝑋) = 𝐽(𝑋: (𝑋⋂𝑌))

= 𝐽(𝑋: 𝑌) − 𝐽(𝑋: (𝑋⋃𝑌)) 
Thus, 

𝐽((𝑋⋂𝑌): 𝑋) = 𝐽((𝑋⋃𝑌): 𝑌) ≤ 𝐽(𝑋: 𝑌) 
Hence proved. 

Corollary 5.4: If 𝑋 𝑎𝑛𝑑 𝑌 ∈ [𝐹𝑀]𝑚×𝑛 then 

we have 

𝐽((𝑋⋃𝑌): 𝑋) = 𝐽((𝑋⋂𝑌): 𝑌) ≤ 𝐽(𝑋: 𝑌) 
Proof: By symmetric properties of 

divergence measure,  

𝐽(𝑋: (𝑋⋃𝑌)) = 𝐽((𝑋⋃𝑌): 𝑋) & 𝐽((𝑋⋂𝑌): 𝑌)

= 𝐽(𝑌: (𝑋⋂𝑌)) 
Now by using part (c) of theorem (5.1) we 

have, 

𝐽(𝑋: (𝑋⋃𝑌)) = 𝐽(𝑌: (𝑋⋂𝑌)) 
Hence, 

𝐽((𝑋⋃𝑌): 𝑋) = 𝐽((𝑋⋂𝑌): 𝑌) 
Now using corollary (5.2) we have, 

𝐽(𝑌: (𝑋⋃𝑌)) + 𝐽(𝑌: (𝑋⋂𝑌)) = 𝐽(𝑋: 𝑌) 

𝐽((𝑋⋂𝑌): 𝑌) = 𝐽(𝑌: (𝑋⋂𝑌))

= 𝐽(𝑋: 𝑌) − 𝐽(𝑌: (𝑋⋃𝑌)) 
Therefore, 

𝐽((𝑋⋃𝑌): 𝑋) = 𝐽((𝑋⋂𝑌): 𝑌) ≤ 𝐽(𝑋: 𝑌) 
Hence Proved. 

Theorem 5.2: Let 𝑋 𝑎𝑛𝑑 𝑌 ∈ [𝐹𝑀]𝑚×𝑛 then 

the following properties are satisfied by 

𝐽(𝑋: 𝑌). 

a. 𝐽(𝑋: 𝑌𝑐) = 𝐽(𝑋𝑐: 𝑌) 
b. 𝐽(𝑋: 𝑋𝑐) = 0 when 𝑥𝑖𝑗 = 0 𝑜𝑟 1 for all 𝑖 𝑎𝑛𝑑 𝑗. 

c. 𝐽(𝑋: 𝑋𝑐) = 0 when 𝑥𝑖𝑗 = 0.5 for all 𝑖 𝑎𝑛𝑑 𝑗. 

Proof: We have 

𝐽(𝑋: 𝑌) =∑∑[{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑛

𝑗=1

𝑚

𝑖=1

 

(a)  First taking left hand side 

𝐽(𝑋: 𝑌𝑐) =∑∑[(𝑥𝑖𝑗 − (1 − 𝑦𝑖𝑗))𝑙𝑜𝑔
𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
+ ((1 − 𝑦𝑖𝑗) − 𝑥𝑖𝑗) 𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − (1 − 𝑦𝑖𝑗)
]

𝑛

𝑗=1

𝑚

𝑖=1
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𝐽(𝑋: 𝑌𝑐) =∑∑[(𝑥𝑖𝑗 + 𝑦𝑖𝑗 − 1)𝑙𝑜𝑔
𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
+ (1 − 𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

𝑦𝑖𝑗
]

𝑛

𝑗=1

𝑚

𝑖=1

 

Now, taking right hand side 

𝐽(𝑋𝑐: 𝑌) =∑∑[((1 − 𝑥𝑖𝑗) − 𝑦𝑖𝑗) 𝑙𝑜𝑔
1 − 𝑥𝑖𝑗

𝑦𝑖𝑗
+ (𝑦𝑖𝑗 − (1 − 𝑥𝑖𝑗))𝑙𝑜𝑔

1 − (1 − 𝑥𝑖𝑗)

(1 − 𝑦𝑖𝑗)
]

𝑛

𝑗=1

𝑚

𝑖=1

 

𝐽(𝑋𝑐: 𝑌) =∑∑[((1 − 𝑥𝑖𝑗 − 𝑦𝑖𝑗)) 𝑙𝑜𝑔
1 − 𝑥𝑖𝑗

𝑦𝑖𝑗
+ (𝑥𝑖𝑗 + 𝑦𝑖𝑗 − 1)𝑙𝑜𝑔

𝑥𝑖𝑗

(1 − 𝑦𝑖𝑗)
]

𝑛

𝑗=1

𝑚

𝑖=1

 

       L.H.S. = R.H.S. 

 (b)  We have 

𝐽(𝑋: 𝑋𝑐) =∑∑[(𝑥𝑖𝑗 − (1 − 𝑥𝑖𝑗))𝑙𝑜𝑔
𝑥𝑖𝑗

(1 − 𝑥𝑖𝑗)
+ ((1 − 𝑥𝑖𝑗) − 𝑥𝑖𝑗) 𝑙𝑜𝑔

(1 − 𝑥𝑖𝑗)

1 − (1 − 𝑥𝑖𝑗)
]

𝑛

𝑗=1

𝑚

𝑖=1

 

𝐽(𝑋: 𝑋𝑐) =∑∑[(−1)𝑙𝑜𝑔
𝑥𝑖𝑗

(1 − 𝑥𝑖𝑗)
+ (1 − 2𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

𝑥𝑖𝑗
]

𝑛

𝑗=1

𝑚

𝑖=1

 

When 𝑥𝑖𝑗 = 0 𝑜𝑟 1 𝑜𝑟 0.5 for all 𝑖 𝑎𝑛𝑑 𝑗. 

𝐽(𝑋: 𝑋𝑐) =∑∑[0]

𝑛

𝑗=1

𝑚

𝑖=1

= 0 

Hence Proved. 

(c) As we know that, 

𝐽(𝑋: 𝑋𝑐) =∑∑[(−1)𝑙𝑜𝑔
𝑥𝑖𝑗

(1 − 𝑥𝑖𝑗)
+ (1 − 2𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

𝑥𝑖𝑗
]

𝑛

𝑗=1

𝑚

𝑖=1

 

 When 𝑥𝑖𝑗 = 0.5 for all 𝑖 𝑎𝑛𝑑 𝑗, then we have 

𝐽(𝑋: 𝑋𝑐) =∑∑[(−1)𝑙𝑜𝑔
0.5

(0.5)
+ (−1)𝑙𝑜𝑔

0.5

(0.5)
]

𝑛

𝑗=1

𝑚

𝑖=1

 

𝐽(𝑋: 𝑋𝑐) =∑∑[−2log (1)]

𝑛

𝑗=1

𝑚

𝑖=1

 

𝐽(𝑋: 𝑋𝑐) =∑∑[0]

𝑛

𝑗=1

𝑚

𝑖=1

= 0 

 

Hence  proved. 

Theorem 5.3: Let 𝑋, 𝑌 𝑎𝑛𝑑 𝑍 ∈ [𝐹𝑀]𝑚×𝑛 

then 

a) 𝐽(𝑋: 𝑍) + 𝐽(𝑌: 𝑍) − 𝐽((𝑋⋃𝑌): 𝑍) =

𝐽((𝑋⋂𝑌): 𝑍) 
b) 𝐽(𝑋: 𝑍) + 𝐽(𝑌: 𝑍) − 𝐽((𝑋⋂𝑌): 𝑍) =

𝐽((𝑋⋃𝑌): 𝑍) 

Proof: To prove this theorem we define 

fuzzy matrices into two sets as given below: 

𝑆1 = {𝑥𝑖𝑗 𝑜𝑟 𝑦𝑖𝑗  ;  𝑥𝑖𝑗 ∈ 𝑋 𝑜𝑟 𝑦𝑖𝑗 ∈ 𝑌; 𝑥𝑖𝑗  ≥  𝑦𝑖𝑗}

𝑆2 = {𝑥𝑖𝑗  𝑜𝑟 𝑦𝑖𝑗 ;  𝑥𝑖𝑗 ∈ 𝑋 𝑜𝑟 𝑦𝑖𝑗 ∈ 𝑌; 𝑥𝑖𝑗  <  𝑦𝑖𝑗}
}  

(a) We have
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𝐽(𝑋: 𝑍) + 𝐽(𝑌: 𝑍) − 𝐽((𝑋⋃𝑌): 𝑍)

=

{
 
 
 
 
 

 
 
 
 
 ∑∑[{(𝑥𝑖𝑗 − 𝑧𝑖𝑗)𝑙𝑜𝑔

𝑥𝑖𝑗

𝑧𝑖𝑗
} + {(𝑧𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑧𝑖𝑗
}]

𝑛

𝑗=1

𝑚

𝑖=1

+∑∑[{(𝑦𝑖𝑗 − 𝑧𝑖𝑗)𝑙𝑜𝑔
𝑦𝑖𝑗

𝑧𝑖𝑗
} + {(𝑧𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔

1 − 𝑦𝑖𝑗

1 − 𝑧𝑖𝑗
}]

𝑛

𝑗=1

𝑚

𝑖=1

−∑∑

[
 
 
 
 (max(𝑥𝑖𝑗 , 𝑦𝑖𝑗) − 𝑧𝑖𝑗)𝑙𝑜𝑔

max(𝑥𝑖𝑗 , 𝑦𝑖𝑗)

𝑧𝑖𝑗

+(𝑧𝑖𝑗 −max (𝑥𝑖𝑗, 𝑦𝑖𝑗))𝑙𝑜𝑔
1 − max (𝑥𝑖𝑗, 𝑦𝑖𝑗)

1 − 𝑧𝑖𝑗 ]
 
 
 
 𝑛

𝑗=1

𝑚

𝑖=1

}
 
 
 
 
 

 
 
 
 
 

 

=

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

∑

(

 
 
 
 
 
[{(𝑥𝑖𝑗 − 𝑧𝑖𝑗)𝑙𝑜𝑔

𝑥𝑖𝑗

𝑧𝑖𝑗
} + {(𝑧𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑧𝑖𝑗
}]

+ [{(𝑦𝑖𝑗 − 𝑧𝑖𝑗)𝑙𝑜𝑔
𝑦𝑖𝑗

𝑧𝑖𝑗
} + {(𝑧𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔

1 − 𝑦𝑖𝑗

1 − 𝑧𝑖𝑗
}]

− [{(𝑥𝑖𝑗 − 𝑧𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑧𝑖𝑗
} + {(𝑧𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑧𝑖𝑗
}]
)

 
 
 
 
 

𝑥𝑖𝑗,𝑦𝑖𝑗,𝑧𝑖𝑗∈𝑆1

+ ∑

(

 
 
 
 
 
[{(𝑥𝑖𝑗 − 𝑧𝑖𝑗)𝑙𝑜𝑔

𝑥𝑖𝑗

𝑧𝑖𝑗
} + {(𝑧𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑧𝑖𝑗
}]

+ [{(𝑦𝑖𝑗 − 𝑧𝑖𝑗)𝑙𝑜𝑔
𝑦𝑖𝑗

𝑧𝑖𝑗
} + {(𝑧𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔

1 − 𝑦𝑖𝑗

1 − 𝑧𝑖𝑗
}]

− [{(𝑦𝑖𝑗 − 𝑧𝑖𝑗)𝑙𝑜𝑔
𝑦𝑖𝑗

𝑧𝑖𝑗
} + {(𝑧𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔

1 − 𝑦𝑖𝑗

1 − 𝑧𝑖𝑗
}]
)

 
 
 
 
 

𝑥𝑖𝑗,𝑦𝑖𝑗,𝑧𝑖𝑗∈𝑆2

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

=

{
 
 

 
 ∑ [{(𝑦𝑖𝑗 − 𝑧𝑖𝑗)𝑙𝑜𝑔

𝑦𝑖𝑗

𝑧𝑖𝑗
} + {(𝑧𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔

1 − 𝑦𝑖𝑗

1 − 𝑧𝑖𝑗
}]

𝑥𝑖𝑗,𝑦𝑖𝑗,𝑧𝑖𝑗∈𝑆1

+ ∑ [{(𝑥𝑖𝑗 − 𝑧𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑧𝑖𝑗
} + {(𝑧𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑧𝑖𝑗
}]

𝑥𝑖𝑗,𝑦𝑖𝑗,𝑧𝑖𝑗∈𝑆2 }
 
 

 
 

 

=∑∑

[
 
 
 
 (min(𝑥𝑖𝑗 , 𝑦𝑖𝑗) − 𝑧𝑖𝑗)𝑙𝑜𝑔

min(𝑥𝑖𝑗 , 𝑦𝑖𝑗)

𝑧𝑖𝑗

+(𝑧𝑖𝑗 −min (𝑥𝑖𝑗 , 𝑦𝑖𝑗))𝑙𝑜𝑔
1 − min(𝑥𝑖𝑗 , 𝑦𝑖𝑗)

1 − 𝑧𝑖𝑗 ]
 
 
 
 𝑛

𝑗=1

𝑚

𝑖=1

 

= 𝐽((𝑋⋂𝑌): 𝑍) 
Hence Proved. 

(b)   Using the result of part (a) of this 

theorem we know that, 

𝐽(𝑋: 𝑍) + 𝐽(𝑌: 𝑍) − 𝐽((𝑋⋃𝑌): 𝑍)

= 𝐽((𝑋⋂𝑌): 𝑍) 
Thus we have 

𝐽(𝑋: 𝑍) + 𝐽(𝑌: 𝑍) − 𝐽((𝑋⋂𝑌): 𝑍)

= 𝐽((𝑋⋃𝑌): 𝑍) 
Hence Proved. 

Corollary 5.5: If 𝑋, 𝑌 𝑎𝑛𝑑 𝑍 ∈ [𝐹𝑀]𝑚×𝑛 

then 

a. 𝐽((𝑋⋃𝑌): 𝑍) ≤ 𝐽(𝑋: 𝑍) +  𝐽(𝑌: 𝑍) 
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b. 𝐽((𝑋⋂𝑌): 𝑍) ≤ 𝐽(𝑋: 𝑍) +  𝐽(𝑌: 𝑍) 
Proof: 
(a) Using part ‘b’ of theorem (5.3) we 

know that, 

𝐽((𝑋⋃𝑌): 𝑍) =  𝐽(𝑋: 𝑍) + 𝐽(𝑌: 𝑍)

− 𝐽((𝑋⋂𝑌): 𝑍) 
Since 𝐽((𝑋⋂𝑌): 𝑍) ≥ 0, 
Hence,  

𝐽((𝑋⋃𝑌): 𝑍) ≤ 𝐽(𝑋: 𝑍) +  𝐽(𝑌: 𝑍) 
Hence Proved. 

(b) Using part ‘a’ of theorem (5.3) we 

know that, 

𝐽((𝑋⋂𝑌): 𝑍) = 𝐽(𝑋: 𝑍) + 𝐽(𝑌: 𝑍)

− 𝐽((𝑋⋃𝑌): 𝑍) 

Since 𝐽((𝑋⋃𝑌): 𝑍) ≥ 0  

Hence, 

𝐽((𝑋⋂𝑌): 𝑍) ≤ 𝐽(𝑋: 𝑍) +  𝐽(𝑌: 𝑍) 
Hence Proved. 

VI. APPLICATION IN DECISION MAKING AND 

DATA REDUCTION 

The proposed measure has application in 

various decision making problems as well as 

in data reduction. Here a real life example is 

considered: 

The Department of Statistics, Maharshi 

Dayanand University, Rohtak has a problem 

which software should be introduced for the 

students. We have collected data about this 

problem from teachers and also from outside 

about the software in the form of fuzzy set 

{Ṡ1, Ṡ2, …… , Ṡ6} having parameters 

{Ṗ1, Ṗ2, …… , Ṗ6}. The data is collected by 

interview method. There are six software 

SPSS, C++, R, MATLAB, C language, 

TORA from which only one is included in 

the syllabus for students on the basis of 

selected parameters. We have taken 8 

parameters/attributes based on the software 

chosen. The parameters are  

1. Job efficient 

2. Latest 

3. Availability of tutor 

4. Useful in Statistics 

5. Cheap 

6. Easy to learn 

7. Basic 

8. Curriculum related 

Now, we have chosen only six parameters 

from all, some biased parameters are 

removed. They are: 

1. Job efficiency 

2. Latest 

3. Useful in Statistics 

4. Cheap 

5. Easy to learn 

6. Curriculum related                                                                                    

Now for evaluating six softwares, the 

following six fuzzy sets will be constructed 

as: 

Ṡ1
= {( ṗ1, 0.9), (ṗ2, 0.8), (ṗ3, 0.9), (ṗ4, 0.1), (ṗ5, 0.8), (ṗ6, 1.0)} 
Ṡ2
= {(ṗ1, 0.2), (ṗ2, 0.3), (ṗ3, 0.4), (ṗ4, 1.0), (ṗ5, 0.2), (ṗ6, 0.1)} 
Ṡ3
= {(ṗ1, 0.9), (ṗ2, 0.8), (ṗ3, 0.8), (ṗ4, 0.3), (ṗ5, 0.9), (ṗ6, 0.9)} 

Ṡ4 = {(ṗ1, 0.6), (ṗ2, 0.6), (ṗ3, 0.6), (ṗ4, 0.2), (ṗ5, 0.5), (ṗ6, 0.7)} 
Ṡ5 = {(ṗ1, 0.3), (ṗ2, 0.2), (ṗ3, 0.3), (ṗ4, 1.0), (ṗ5, 0.7), (ṗ6, 0.2)} 
Ṡ6 = {(ṗ1, 0.4), (ṗ2, 0.7), (ṗ3, 0.7), (ṗ4, 0.7), (ṗ5, 0.7), (ṗ6, 0.8)} 
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Here, a table is presented, these six sets which is further converted in a fuzzy matrix ′Ṡ′ having 

order (6 × 6) where rows represent software and column represents parameters as follows: 

Software/parameter ṗ1 ṗ2 ṗ3 ṗ4 ṗ5 ṗ6 
Ṡ1 0.9 0.8 0.9 0.1 0.8 0.8 

Ṡ2 0.2 0.3 0.4 0.9 0.2 0.2 

Ṡ3 0.9 0.8 0.8 0.5 0.9 0.9 

Ṡ4 0.6 0.6 0.6 0.2 0.5 0.5 

Ṡ5 0.3 0.3 0.3 0.9 0.7 0.7 

Ṡ6 0.4 0.7 0.7 0.7 0.7 0.5 
 

Ṡ =

[
 
 
 
 
 

0.9 0.8
0.2 0.3

    
0.9 0.1 0.8
0.4 0.9 0.2

    
0.8
0.2

     0.9 0.8 0.8
    0.6 0.6 0.6
    0.3 0.3 0.3

    
0.5 0.9 0.9
0.2 0.5 0.5
0.9 0.7 0.7

     

0.4 0.7 0.7    0.7 0.7     0.5 ]
 
 
 
 
 

 

 

Let 𝑇 =
{(Ṗ1, 0.8), (Ṗ2, 0.6), (Ṗ3, 0.9), (Ṗ4, 0.8), (Ṗ5, 0.5), (Ṗ6, 0.9)} 
be the standard of various parameters for a  

particular software provided by the head of 

department. 

Then as a fuzzy row matrix 𝑇 can be 

represented as: 

 

𝑇 = [ 0.8 0.6 0.9    0.8 0.5    0.9] 
 

Now divide the fuzzy matrix Ṡ into six row 

matrices as  {Ṡ1, Ṡ2, …… , Ṡ6}Now we will 

find the divergence between each row 

matrix and matrix 𝑇 by using proposed 

divergence measure 

𝐽(𝑋: 𝑌) =∑∑{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}    

𝑛

𝑗=1

𝑚

𝑖=1

 

𝐽(Ṡ1: 𝑇) =

{
 
 
 
 

 
 
 
 [(0.9 − 0.8)𝑙𝑜𝑔

0.9

0.8
+ (0.8 − 0.9)𝑙𝑜𝑔

1−0.9

1−0.8
]

[(0.2 − 0.6)𝑙𝑜𝑔
0.2

0.6
+ (0.2 − 0.6)𝑙𝑜𝑔

1−0.2

1−0.6
]

[(0.9 − 0.9)𝑙𝑜𝑔
0.9

0.9
+ (0.9 − 0.9)𝑙𝑜𝑔

1−0.9

1−0.9
]

[(0.6 − 0.8)𝑙𝑜𝑔
0.6

0.8
+ (0.6 − 0.8)𝑙𝑜𝑔

1−0.6

1−0.8
]

[(0.3 − 0.5)𝑙𝑜𝑔
0.3

0.5
+ (0.3 − 0.5)𝑙𝑜𝑔

1−0.3

1−0.5
]

[(0.4 − 0.9)𝑙𝑜𝑔
0.4

0.9
+ (0.9 − 0.4)𝑙𝑜𝑔

1−0.4

1−0.9
]}
 
 
 
 

 
 
 
 

=1.42566 

 

 

We  need to find divergence of 𝑇 with other 

matrices (Ṡ2, Ṡ3, …… . . , Ṡ6) which are given 

below: 

𝐽(Ṡ2: 𝑇) = 2.75611,
𝐽(Ṡ3: 𝑇) = 𝟎. 𝟕𝟏𝟕𝟗𝟒𝟓𝟑,
𝐽(Ṡ4: 𝑇) = 1.42281 

𝐽(Ṡ5: 𝑇) = 1.66764, 𝐽(Ṡ6: 𝑇) = 0.9264. 
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Third row matrix (Ṡ3) has minimum 

divergence from the other row matrices. The 

optimum solution of 𝑇 is 0.7179453 which 

is Software Ṡ3. Thus software Ṡ3 will be best 

in preference of Ṡ6, Ṡ4, Ṡ1, Ṡ5, Ṡ2. 

 

The choice of preferred software for 

students according to all teachers of the 

department has been shown in the following 

figure (1).The figure clearly shows that 

software (Ṡ3) has minimum divergence than 

other softwares. Thus R software is the best 

for the students according to teachers. 

 

 

 
 

Figure 1: The comparison chart of different 

software showing divergence  

In matrix Ṡ the columns of matrix are 

representation the parameters of software, 

thus for parameter reduction firstly we find 

the order of significance of these 

parameters. 

Let 𝑌 =
{(𝑋1, 0.8), (𝑋2, 0.2), (𝑋3, 0.8), (𝑋4, 0.4), (𝑋5, 0.3), (𝑋6, 0.5)} 
be the preferences of head of the department 

for various software for a particular 

parameter. 

Then as a fuzzy column matrix 𝑌 can be 

represented as: 

𝐹 = [ 0.8 0.2 0.8    0.4 0.3 0.5]𝑇 

Now divide the fuzzy matrix Ṡ into column 

matrices as {𝐹1, 𝐹2, …… , 𝐹6}. Now we  have 

to find the divergence between these column 

matrices and matrix 𝐹 by using proposed 

divergence measure

 

𝐽(𝑋: 𝑌) =∑∑[{(𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑙𝑜𝑔
𝑥𝑖𝑗

𝑦𝑖𝑗
} + {(𝑦𝑖𝑗 − 𝑥𝑖𝑗)𝑙𝑜𝑔

1 − 𝑥𝑖𝑗

1 − 𝑦𝑖𝑗
}]

𝑛

𝑗=1

𝑚

𝑖=1
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𝐽(𝐹1: 𝐹) =

{
 
 
 
 
 
 

 
 
 
 
 
 [(0.9 − 0.8)𝑙𝑜𝑔

0.9

0.8
+ (0.8 − 0.9)𝑙𝑜𝑔

1 − 0.9

1 − 0.8
]

[(0.2 − 0.2)𝑙𝑜𝑔
0.2

0.2
+ (0.2 − 0.2)𝑙𝑜𝑔

1 − 0.2

1 − 0.2
]

[(0.9 − 0.8)𝑙𝑜𝑔
0.9

0.8
+ (0.8 − 0.9)𝑙𝑜𝑔

1 − 0.9

1 − 0.8
]

[(0.6 − 0.4)𝑙𝑜𝑔
0.6

0.4
+ (0.6 − 0.4)𝑙𝑜𝑔

1 − 0.6

1 − 0.4
]

[(0.3 − 0.3)𝑙𝑜𝑔
0.3

0.5
+ (0.3 − 0.3)𝑙𝑜𝑔

1 − 0.3

1 − 0.3
]

[(0.4 − 0.5)𝑙𝑜𝑔
0.4

0.5
+ (0.5 − 0.4)𝑙𝑜𝑔

1 − 0.4

1 − 0.5
]}
 
 
 
 
 
 

 
 
 
 
 
 

= 𝟎. 𝟏𝟓𝟖𝟒𝟖𝟐 

Similarly, we may find divergence of 𝐹 with 

other matrices (𝐹2, 𝐹3, …… . . , 𝐹6) which are 

given below: 

𝐽(𝐹2: 𝐹) = 𝟎. 𝟏𝟔𝟕𝟒𝟒,
𝐽(𝐹3: 𝐹) = 𝟎. 𝟐𝟔𝟒𝟒𝟒𝟒,
𝐽(𝐹4: 𝐹) = 𝟑. 𝟑𝟏𝟏𝟓𝟔𝟐 

𝐽(𝐹5: 𝐹) = 𝟎. 𝟑𝟒𝟕𝟐𝟎𝟗,
𝐽(𝐹6: 𝐹) = 𝟎. 𝟓𝟒𝟒𝟖𝟖𝟔. 

 The minimum divergence from 𝑌 is 

0.158482 which is defined with column 

matrix 𝐹1 as compare to other column 

matrices.  

We find the perfect solution of 𝐹 is 0. 

158482 which is option 𝐹1. Thus parameter 

𝑃1 is more significant in comparison to 

𝐹2, 𝐹3, 𝐹5, 𝐹6, 𝐹4.  
Now we have to take away parameters 

which do not change the order of preference 

of software or maintain the optimality of 

decision. Here 𝐹4 is least significant so we 

first abolish 𝐹4 and check the optimality of 

the result. 
𝐽(𝐵1: 𝐵) = 𝟎. 𝟑𝟑𝟔𝟐𝟓,

𝐽(𝐵2: 𝐹) = 2.72089,
𝐽(𝐵3: 𝐵) = 0.53733 

𝐽(𝐵4: 𝐵) = 0.70034,
𝐽(𝐵5: 𝐵) = 1.63242,
𝐽(𝐵6: 𝐵) = 0.90299. 

The decision is not optimal after eviction of 

𝐹4  so we cannot remove 𝐹4. 
When we remove 𝐹5 then 

𝐽(𝐵1: 𝐵) = 1.42504,
𝐽(𝐵2: 𝐵) = 2.57549,
𝐽(𝐵3: 𝐵) = 𝟎. 𝟑𝟑𝟔𝟐𝟓 

𝐽(𝐵4: 𝐵) = 1.24281,
𝐽(𝐵5: 𝐵) = 1.59404,
𝐽(𝐵6: 𝐵) = 0.85281. 

We can remove 𝐹5 because optimality 

maintain after removal of it. 

When we remove 𝐹2 then 

𝐽(𝐵1: 𝐵) = 1.34047,
𝐽(𝐵2: 𝐵) = 2.59289,
𝐽(𝐵3: 𝐵) = 𝟎. 𝟔𝟑𝟐𝟕𝟓 

𝐽(𝐵4: 𝐵) = 1.42281,
𝐽(𝐵5: 𝐵) = 1.50442,
𝐽(𝐵6: 𝐵) = 0.90721. 

We can remove 𝐹2 because optimality 

maintain after removal of it. 

Similarly when we remove 𝐹6, 𝐹1, 𝐹4 

individualy then optimality of decision is not 

maintained so we can’t remove these 

parameters individually.  

When we remove 𝐹2 & 𝐹5 both then 

𝐽(𝐵1: 𝐵) = 1.15985,
𝐽(𝐵2: 𝐵) = 2.41227,
𝐽(𝐵3: 𝐵) = 𝟎. 𝟐𝟓𝟏𝟎𝟓 

𝐽(𝐵4: 𝐵) = 1.42281,
𝐽(𝐵5: 𝐵) = 1.43082,
𝐽(𝐵6: 𝐵) = 0.83362. 

Here we can see from the result, solution of 

the problem has not changed, decision is 

maintained so we can remove these 

parameters. 
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Since solution is optimal so we can remove 

any subset from these given parameters set. 

Thus we can eliminate the following 

parameters subset{ {𝐹2, 𝐹5}, {𝐹2}, {𝐹5}}. 
 

 

 
 

Figure 2: The comparison chart of Feature selection showing decision maintenance 

 

To reduce any feature we check divergence 

between features and then reduce one by one 

feature to find out which feature removal 

does not affect the result. The figure (2) 

shows only removal of  𝐹2, 𝐹5 and both  

𝐹2and 𝐹5 maintain the optimality of the 

result. 

 
VII. CONCLUSION 

The chapter introduced logarithmic 

divergence measure for fuzzy matrix. 

Proposed measure is a valid measure as it 

satisfies all the axioms.  Properties in the 

form of theorems are also proved of the 

measure. An application of the measure is 

presented in decision making problem and 

parameter reduction problem. We may 

eclectic the best alternative in preference to 

other available alternatives in decision 

making problem. We remove those features 

which have inconsequential to make 

decision and after eviction of these features 

decision is maintained in feature selection 

problem. Finally, the proposed divergence 

measure is applied on a case-study to check 

its real application. 
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